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Abstract—Recent developments in network information the-
ory, such as interference alignment and compute-and-forward,
have highlighted connections to the branch of mathematics
known as Diophantine approximation. At a high level, Diophan-
tine approximation is concerned with how well the reals can be
approximated by rationals. This paper surveys some classical
and modern Diophantine results and demonstrates their appli-
cations in establishing degrees-of-freedom and capacity bounds.

I. INTRODUCTION

It is by now well-known that codes with algebraic struc-
ture (e.g., lattice codes, linear codes) are quite useful for
establishing achievability theorems in network information
theory. Scenarios where random structured codebooks are
useful include distributed source coding [1], [2], relaying [3]–
[5], interference alignment [6]–[10], dirty-paper multiple-
access [11]–[13], and physical-layer secrecy [14]–[16]. See
the recent textbook of Zamir for a comprehensive treatment
of lattice codes and their applications [17]. It has also
been noted that these achievability results are often quite
sensitive to how close the source or channel parameters are to
integers or rationals. This stands in contrast to the behavior
of achievability results proven with random i.i.d. codebooks,
which are often monotonic functions of the parameters.

At a high level, Diophantine approximation is a branch
of number theory that studies how well real numbers can
be approximated by rationals (with a bounded denomina-
tor) [18], [19]. Classical and modern results from this field
have been employed to establish the degrees-of-freedom for
several structured coding strategies. For instance, the real
interference alignment strategy of Motahari et al. [7] uses
approximation results for manifolds [20], [21] to establish
that K/2 degrees-of-freedom are achievable K-user Gaussian
interference channel for almost every channel matrix.

In 2014 and 2016, the York Workshop on Interactions
between Number Theory and Wireless Communication pro-
vided an opportunity for number theorists and information
theorists to exchange ideas and discuss open problems of
mutual interest. For instance, most Diophantine approxima-
tion results are stated as “zero-one laws,” which seems to
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limit their applicability to degrees-of-freedom bounds, i.e.,
taking the signal-to-noise ratio (SNR) to infinity. Thus, it is of
interest to develop approximation results that are amenable to
finite SNR bounds. Below, we provide a (necessarily incom-
plete) survey of classical and recent results from Diophantine
approximation. Using compute-and-forward as a case study,
we will discuss how these approximation theorems can be
used to obtain simple upper and lower bounds on achievable
rate expressions.

II. CLASSIC RESULTS IN DIOPHANTINE APPROXIMATION

The most basic question in Diophantine approximation is
how well can a real number h ∈ R be approximated by
a rational number whose denominator is smaller than some
positive integer Q. The simplest estimate on the approxima-
tion error was obtained by Dirichlet [22].

Theorem 1 (Dirichlet 1842): For any h ∈ R and Q ∈ N,
there exist integers p and q such that 1 ≤ q ≤ Q and
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Proof. For a real number x denote the floor operation by
⌊x⌋. Consider the following Q+ 1 numbers

0, 1, h− ⌊h⌋, 2h− ⌊2h⌋, . . . , Qh− ⌊Qh⌋ (1)

and the Q intervals
[

0,
1

Q

)

,

[
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Q
,
2

Q

)

, . . . ,

[

Q− 1

Q
, 1

)

.

By the pigeonhole principle, at least one interval contains
two or more numbers from (1). Hence, there are integers
q1, q2, p1, p2 with 0 ≤ q1 < q2 ≤ Q such that

|(q2h− p2)− (q1h− p1)| <
1

Q
.

Thus, taking q = q2 − q1 ≤ Q and p = p2 − p1 we have that

|qh− p| <
1

Q
.

Dividing both sides by q establishes the theorem.
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In particular, Dirichlet’s theorem shows that for any h ∈ R,
there are infinitely many solutions (q, p) ∈ N × Z to the
equation

|qh− p| < ψ(q),

with ψ(q) = q−1.
Definition 1 (Approximating Function): We say that ψ :

R+ '→ R+ is an approximating function if it is monotonically
decreasing and satisfies ψ(r) → 0 as r → ∞.
Note that the monotonicity assumption can often be removed.
See [23] for more details.

We can now define the set W(ψ) of ψ-well approximable

numbers as

W(ψ) !

{

h ∈ [0, 1) : |qh− p| < ψ(q)

for i.m. (q, p) ∈ N× Z

}

, (2)

where ‘i.m.’ reads ‘infinitely many’.1 Denote the Lebesgue
measure of a subset A ⊂ R by µ(A). Consider the following
basic question in metric Diophantine approximation: How
does µ (W(ψ)) depend on ψ? The answer is given by
Khintchine’s Theorem [24].

Theorem 2 (Khintchine 1924): Let ψ be an approximating
function. Then

µ (W(ψ)) =

{

0 if
∑∞

q=1 ψ(q) ≤ ∞
1 if

∑∞
q=1 ψ(q) = ∞

.

It is instructive to consider the family of approximating
functions ψ(r) = r−m. From Dirichlet’s Theorem, we see
that for all m ≤ 1 it holds that W(ψ) = [0, 1) and thus
µ (W(ψ)) = 1. (The latter statement can also be obtained
directly from the convergent part of Khintchine’s Theorem.)
The divergent part of Khintchine’s Theorem shows that for
any m > 1 we have that µ (W(ψ)) = 0. Thus, m = 1 is the
critical exponent.

Both Dirichlet’s and Khintchine’s Theorems admit gener-
alizations for matrices of arbitrary dimensions. For brevity,
we will only mention the generalization of the latter, due
to Groshev [25], and referred to as the Khintchine-Groshev
Theorem. Let

WN,M (ψ) !

{

H ∈ [0, 1)N×M : ∥Hq− p∥∞ < ψ(∥q∥∞)

for i.m. (q,p) ∈ Z
M × Z

N

}

,

and let µ be the MN -dimensional Lebesgue measure.
Theorem 3 (Khintchine-Groshev): Let N,M ∈ N and let

ψ be an approximating function. Then

µ (WN,M (ψ)) =

{

0 if
∑∞

q=1 q
M−1ψ(q)N < ∞

1 if
∑∞

q=1 q
M−1ψ(q)N = ∞

.

1Note that the restriction to the unit interval entails no loss of generality,
since h is ψ-well approximable if and only if h+ z is, for all z ∈ Z.

The following simple corollary of the convergent part of
Theorem 3 plays an important role in the applications of
Diophantine approximation to network information theory.

Corollary 1 ( [23, Corollary 1]): Let N,M ∈
N and let ψ be an approximating function satisfying
∑∞

q=1 q
M−1ψ(q)N < ∞. Then for almost every H ∈ RN×M

(w.r.t. to the MN -dimensional Lebesgue measure) there exist
a constant κ(H) > 0 such that

∥Hq− p∥∞ > κ(H)ψ(∥q∥∞) ∀ q ∈ Z
M \ {0},p ∈ Z

N .

The study of lattices, and more generally of the “geometry
of numbers”, initiated by Minkowski at the end of the
19th century, turned out to provide a powerful framework
for proving Dirichlet-like theorems for matrices of arbitrary
dimensions. Let F ∈ RK×K be a full-rank matrix, and let

Λ(F) !
{

Fa : a ∈ Z
K
}

,

be the lattice generated by the matrix F.
Definition 2 (Successive Minima): For k = 1, . . . ,K, we

define the kth successive minimum of Λ(F) as

λk(F) ! inf
{

r : dim
(

span
(

Λ(F)
⋂

B(0, r)
))

≥ k
}

where B(0, r) =
{

x ∈ RK : ∥x∥ ≤ r
}

is the closed ball of
radius r around 0. In words, the kth successive minimum of
a lattice is the minimal radius of a ball centered around 0

that contains k linearly independent lattice points.
Theorem 4 (Minkowski’s First Theorem): For any full-rank

matrix F ∈ RK×K

λ2
1(F) ≤ K |det(F)|

2
K .

Theorem 5 (Minkowski’s Second Theorem): For any full-
rank matrix F ∈ RK×K

|det(F)|2 ≤
K
∏

m=1

λ2
m(F) ≤ KK |det(F)|2 .

Note that these two statements are a specialization of
Minkowski’s original results [18, p.156] into a form with
explicit constants [26].

III. SOME APPLICATIONS IN NETWORK INFORMATION

THEORY

We now demonstrate some applications of the classical
results discussed above to network information theory. In
particular, we will focus on the compute-and-forward strategy
and the symmetric Gaussian interference channel.

A. Multiple-Access Channels and Compute-and-Forward

Consider the K-user Gaussian multiple-access channel
(MAC)

y =
K
∑

k=1

hkxk + z, (3)
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where the vector h = [h1 · · · hK ] ∈ RK represents the
channel gains, xk ∈ Rn, k = 1, . . . ,K , are the channel
inputs, z ∈ Rn is additive white Gaussian noise (AWGN)
with zero mean and unit variance and y ∈ Rn is the channel
output. Without loss of generality, we assume all K users are
subject to the same power constraint

∥xk∥2 ≤ nsnr, k = 1, . . . ,K.

The compute-and-forward framework, introduced in [5], pro-
vides a communication scheme based on nested lattice codes
for decoding integer-linear combinations of the transmitted
codewords. In particular, it was shown in [5], [27] that for n
large enough and any a = [a1 · · · aK ] ∈ ZK , it is possible
to decode the integer-linear combination

v =
K
∑

k=1

akxk

with a vanishing error probability, as long as all K users
transmit from the same nested lattice codebook of rate

R < Rcomp(h, a, snr) ! −
1

2
log ∥Fa∥2, (4)

where F ∈ RK×K satisfies the equation FTF =
(

I+ snrhTh
)−1

.
Typically, the receiver is only interested in decoding

L linearly independent linear combinations, but does not
care about the particular coefficients. Therefore, we can
use the L linearly independent integer vectors a1, . . . , aL
that yield the highest rates Rcomp(h, a1, snr) ≥ · · · ≥
Rcomp(h, aL, snr). Accordingly, we define the kth compu-

tation rate Rcomp,k(h, snr) ! R(h, ak, snr) to be the rate
associated with decoding the kth best integer coefficient
vector, linearly independent of {a1, . . . , ak−1}. It follows by
definition that

Rcomp,k(h, snr) = −
1

2
logλ2

k(F).

By Sylvester’s Theorem [28], we have that

|det(F)|2 = det(I+ snrhTh)−1

= (1 + snr∥h∥2)−1.

Combining this identity with Minkowski’s First and Second
Theorems yields the following results, respectively.

Theorem 6: For any h ∈ RK and snr > 0, we have that

Rcomp,1(h, snr) ≥
1

K
·
1

2
log(1 + snr∥h∥2)−

1

2
logK.

Theorem 7 ( [9, Theorem 3]): For any h ∈ RK and snr >
0, we have that

1

2
log(1 + snr∥h∥2)−

K

2
logK ≤

K
∑

k=1

Rcomp,k(h, snr)

≤
1

2
log(1 + snr∥h∥2).

Recalling that 1
2 log(1 + snr∥h∥2) is the sum-capacity of

the MAC (3), the interpretation of Theorem 6 is that the rate
for decoding the best equation is never much smaller than
the symmetric capacity of the channel, whereas Theorem 7
tells us that the sum of the rates for decoding the best
K independent equations is never much smaller than the
channel’s sum-capacity. Note that decoding K linearly inde-
pendent equations is equivalent to decoding all K codewords.
Consequently, Theorem 7 was used in [9] to show that a low-
complexity scheme based on nested lattice codes can achieve
the sum-capacity of the Gaussian MAC (3) to within a gap
of at most K

2 logK bits.
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Fig. 1. Computation rates for the best two linearly independent integer linear
combinations vs. h for the channel y = x1 +hx2 + z at snr = 40dB. The
sum of these computation rates is nearly equal to the multiple-access sum
capacity. All rates are normalized by this sum capacity 1/2 log(1 + (1 +
h2)snr).

Theorem 7 shows that the sum of computation rates de-
pends of h mainly through its Euclidean norm, and is not too
sensitive to perturbations in its individual entries. However,
while the sum is near constant, the way it is distributed
between Rcomp,1(h, snr), . . . , Rcomp,K(h, snr) can be highly
sensitive to the channel vector h. See Figure 1. Theorem 6
provides a universal lower bound on Rcomp,1(h, snr), but the
only universal upper bound we can obtain is

Rcomp,1(h, snr) ≤
1

2
log(1 + snrmax

k
|hk|2),

which is attained with equality when h contains only one
nonzero entry [5, Theorem 14]. Nevertheless, in the limit of
high snr, it is possible to obtain informative upper bounds on
Rcomp,1(h, snr) that hold for almost every h ∈ RK . First, let
us define the number of degrees-of-freedom (DoF) associated
with the kth computation rate as

dcomp,k(h) ! lim
snr→∞

Rcomp,k(h, snr)
1
2 log(1 + snr)

.

Theorem 6 and Theorem 7 imply that for any h ∈ RK

dcomp,1(h) ≥
1

K
(5)
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and

K
∑

k=1

dcomp,k(h) = 1, (6)

respectively. The following result uses the Khintchine-
Groshev Theorem to show that the lower bound (5) is tight
for almost every h ∈ RK .

Theorem 8 ( [9, Corollary 4]): For almost every h ∈ RK

(w.r.t. Lebesgue measure)

dcomp,1(h) =
1

K
.

Theorem 8 is a simple consequence of the following result.

Lemma 1: Let h ∈ RK \ {0}, and let h⃗ ∈ RK \ {0} be

its permuted version such h̄ = |⃗h1| ≥ · · · ≥ |⃗hK |. Further

define h̃k = h⃗k/h̄ for k = 1, . . . ,K and

c0(h) ! min

(

1

4h̄2
, max
k=2,...,K

1

1 + h̃2
k

)

.

For any ϵ > 0, let 0 ≤ κϵ(h) ≤ 1/2 be the largest number
for which

max
k=2,...,K

|qh̃k − ak| ≥ κϵ(h) · |q|−(1+ϵ)/(K−1)

∀q ∈ N, (a2, . . . , aK) ∈ Z
K−1. (7)

Then,

Rcomp,1(h, snr)

≤
1 + ϵ

K + ϵ
·
1

2
log(snr)−

1

2
log(c0(h)) − log(κϵ(h)). (8)

Proof of Theorem 8. Clearly, c0(h) > 0 for every h ∈
RK \{0}. Let ψ(r) = r−

1+ϵ

K−1 and note that
∑∞

q=1(ψ(q))
K−1

converges. Corollary 1 therefore implies that κ(h) > 0 for
almost every h ∈ RK . The result now follows by applying (8)
and taking the double limit

lim
snr→∞

lim
ϵ→0

1+ϵ
K+ϵ ·

1
2 log(snr)−

1
2 log(c0(h))− log(κϵ(h))

1
2 log(1 + snr)

.

Proof of Lemma 1. From [9], an alternative expression for
Rcomp,1(h, snr) is

Rcomp,1(h, snr) =
1

2
log

(

snr

minα∈R,a∈ZK\{0} σ2(α, a,h, snr)

)

,

(9)

where

σ2(α, a,h, snr) ! α2 + snr

K
∑

k=1

(αhk − ak)
2.

Our goal is to lower bound
minα∈R,a∈ZK\{0} σ

2(α, a,h, snr). Since Rcomp,1(h, snr)
is invariant to permutations on the entries of h, we can

assume w.l.o.g. that h = h⃗, such that h̄ = |h1|. It is easy to
see that

σ2(α, a,h, snr) ≥
snr

4
≥ κ2

ϵ(h)snr (10)

for all |α| < 1
2 , a ∈ ZK \ {0}.

For |α| > 1/2 we can write α = (q + ϕ)/h1 where q ∈
Z \ {0} and ϕ ∈ [−1/2, 1/2), which gives rise to

σ2(α, a,h, snr) = σ2(ϕ, q, a,h, snr)

=
(q + ϕ)2

h2
1

+ snr

K
∑

k=1

(

(q + ϕ)h̃k − ak
)2

=
(q + ϕ)2

h2
1

+ snr

(

(q + ϕ− a1)
2 (11)

+ max
k=2,...,K

(

(q + ϕ)h̃k − ak
)2
)

≥
(q/2)2

h2
1

+ snr

(

ϕ2 + max
k=2,...,K

(

(q + ϕ)h̃k − ak
)2
)

(12)

where in (12) we used the fact that for every q, a1 ∈ Z and
every ϕ ∈ [−1/2, 1/2) it holds that |q + ϕ| ≥ |q/2| and
|q − a1 + ϕ| ≥ |ϕ|. Next, we note that for every choice of

ak, q, h̃k the function gk(ϕ) = ϕ2 +
(

(q + ϕ)h̃k − ak
)2

is
convex and attains its minimum at

ϕ∗
k =

−h̃k

1 + h̃2
k

(qh̃k − ak)

and this minimum value is equal to

gk (ϕ
∗
k) =

1

1 + h̃2
k

(qh̃k − ak)
2.

We therefore have that

σ2(ϕ, q, a,h, snr) ≥
q2

4h2
1

+ snr max
k=2,...,K

1

1 + h̃2
k

(qh̃k − ak)
2

≥ c0(h)

(

max
k=2,...,K

|qh̃k − ak|2snr+ q2
)

= c0(h)Γ(q, (a2, . . . , aK),h, snr) (13)

where

Γ(q, (a2, . . . , aK),h, snr) ! max
k=2,...,K

|qh̃k − ak|2snr + q2.

Since in (12) we set a1 = q, the restriction that a ∈ ZK \{0}
translates to the restriction that (q, a2, . . . , aK) ∈ ZK \ {0}.
By definition of κϵ(h), for any choice of (q, a2, . . . , aK) ∈
ZK \ {0} with q ̸= 0, we have that

Γ(q, (a2, . . . , aK),h, snr) ≥ κ2
ϵ(h)

(

|q|−
2(1+ϵ)
K−1 snr + q2

)

≥ κ2
ϵ(h)snr

K−1
K+ϵ , (14)

where in the last inequality we have used the fact that

x−2 1+ϵ

K−1 snr + x2 ≥ snr

K−1
K+ϵ for all x > 0. Combining (14)

and (10) we obtained that for any (q, a2, . . . , aK) ∈ ZK \{0}
it holds that

Γ(q, (a2, . . . , aK),h, snr) ≥ κ2
ϵ(h)snr

K−1
K+ϵ . (15)
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Substituting this into (13) gives that for any α ∈ R and any
a ∈ ZK \ {0} we have that

σ2(α, a,h, snr) ≥ c0(h)κ
2
ϵ(h)snr

K−1
K+ϵ . (16)

Combining this with (9) establishes the desired result.
Remark 1: Niesen and Whiting [29] studied the DoF

offered by the highest computation rate and showed that

dcomp,1 ≤
{

1/2 K = 2
2/(K + 1) K > 2

(17)

for almost every h ∈ RK . Thus, Theorem 8 improves
upon [29] for K > 2.

Corollary 2 ( [9, Corollary 5]): For almost every h ∈ RK

(w.r.t. Lebesgue measure)

dcomp,1(h) = · · · = dcomp,K(h) =
1

K
.

Proof. By (6), we have that
∑K

k=1 dcomp,k = 1. Using the
fact that dcomp,k is monotonically decreasing in k and that
dcomp,1 = 1/K for almost every h ∈ RK , the corollary
follows.

Remark 2: In [30], Theorem 8 was extended to multiple
access channels where the receiver is equipped with N > 1
antennas, and it was shown that dcomp,1(H) = min(1, N/K)
for almost every H ∈ RN×K (w.r.t. Lebesgue measure),
where Hij is the channel gain from the jth user to the ith
receive antenna.

B. Interference Channels and Lattice Alignment

We now consider the K-user symmetric Gaussian interfer-
ence channel, which consists of K transmitter-receiver pairs.
The kth receiver observes

yk = xk + h
∑

ℓ ̸=k

xℓ + zk

where xℓ ∈ Rn is the codeword from transmitter ℓ, h ∈ R is
the interfering channel gain and zk is i.i.d. AWGN with zero
mean and unit variance. The goal of receiver k is to recover
xk from yk and we are interested in determining the highest
symmetric rate Rsym (i.e., all users have the same rate). As
before, we assume all users face the same power constraint
∥xℓ∥2 ≤ nsnr.

If all transmitters employ the same lattice codebook,
then the interference will automatically be aligned from the
perspective of each receiver, owing to the fact that lattices
are closed under integer-linear combinations. Therefore, from
the perspective of each receiver, it observes an effective
two-user multiple-access channel, and can recover its de-
sired codeword from only two integer-linear combinations
of the codewords. It follows from the analysis above that
dcomp,2 = 1/2 and thus each user can attain 1/2 degrees-
of-freedom, for almost every h ∈ R. For the general K-
user Gaussian interference channel, we need to employ the
signaling strategy from [7], which leads to effective channel
gains that are drawn from a certain manifold. As a result,

we require more sophisticated Diophantine approximation
theorems [20], [21], [31] in order to show that that 1/2
degrees-of-freedom are achievable for almost all channel
gains.

We now consider the symmetric rate at finite SNR. As
shown in [9], all receivers can decode so long as

R < −
1

2
log(λ2

2(F)) (18)

where F ∈ R2×2 satisfies FTF = (B−1+ snrgTg)−1 where

B =

[

1 0
0 (K − 1)

]

g = [1 h].

While this rate expression can be evaluated numerically, it
cannot be directly compared to available upper bounds in
this form. Consider the strong regime, h ∈ [1,

√
snr]. In [9],

it was shown that, in the strong regime, for any γ > 0

1

4
log(h2

snr)−
γ

2
− 3 ≤ Rsym ≤

1

4
log(h2

snr) + 1 (19)

up to an outage set of measure 2−γ with respect to the
channel gains in the interval [1,

√
snr]. Similar results can

also be found for the X channel in [8]. The proof closely
follows the proof of the convergent part of Khintchine’s
Theorem, but does not take the limit that leads to the zero-
one law in the usual theorem statement. In the next section,
we discuss recent results in Diophantine approximation that
capture a general form of this result.

IV. RECENT DEVELOPMENTS

Let ψ be an approximating function, κ > 0 be a positive
real number, and define the set

IN,M (ψ, κ) !

{

H ∈ R
N×M : ∥Hq− p∥∞ ≥ κψ(∥q∥∞)

∀q ∈ Z
M \ {0},p ∈ Z

N

}

.

Assuming the matrix H is randomly drawn from some given
distribution, it is often of interest to calculate the quantity

Pr (H /∈ IN,M (ψ, κ)) .

This quantity has been the subject of a recent work [23],
which studied it under various assumptions on the underlying
probability distribution and the approximating function. We
reproduce one of the main results below.

Theorem 9 ( [23, Corollary 2]): Choose 0 < δ <
1. Let H ∈ RN×M be a random matrix and ψ an
approximating function. Define Sψ = supq∈N ψ(q) and

Σψ =
∑∞

q=1 q
M−1(ψ(q))N . Furthermore, assume that the

pdf of H is upper bounded by a constant, fH(H) ≤
cmax and let T be the smallest positive integer such that
Pr
(

H ∈ [−T, T ]N×M
)

≥ 1− δ/2. Then,

Pr (H /∈ IN,M (ψ, κ)) ≤ δ

where

κ =
1

2
min

{

1

Sψ
,

((

δ

2cmax(2T )MNΣψ

)1/M
}

.
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We now demonstrate how this result can be used to prove
the lower bound in (19). Using a variation on Theorem 7
from [9, Theorem 7], it can be shown that

Rsym >
1

2
log(h2

snr)−
1

2
log

(

snr

σ2
eff

)

− 1

>
1

2
log(h2) +

1

2
log(σ2

eff)− 1 (20)

where

σ2
eff = min

α∈R

[a1 a2]∈Z
2\{0}

α2 + snr

(

(α − a1)
2 + (K − 1)(αh− a2)

2
)

.

Following the steps in [9, p.3469], it follows that if |α| <
1/2, then σ2

eff > snr
1/2/(4h). For |α| ≥ 1/2, we get the

lower bound

σ2
eff ≥

1

4
min
q,p

max

{

q2,
snr

h2
(qh− p)2

}

In order to apply Theorem 9, we assume first that h is
drawn uniformly from the interval [1, 2). Thus, we can have
cmax = 1 and T = 2. Select the approximating function

ψ(q) =

{

1
Q 1 ≤ q ≤ ⌊Q⌋,
0 otherwise.

which yields Sψ = 1
Q and Σψ ≤ 1.

It follows from Theorem 9 that

σ2
eff ≥

1

4
min
q,p

max

{

q2,
snr

h2
(κψ(q))2

}

for any q for all but a set of channel gains in [1, 2)
with measure δ where κ = min{Q

2 ,
δ
16}. Setting Q =

snr
1/4
(

δ
16⌈h⌉

)1/2
, we get that

σ2
eff ≥ snr

1/2 δ

64h
.

for all but a set of channel gains in [1, 2) with measure δ so
long as snr > 1.

Plugging this into (20), we get that

Rsym >
1

2
log(h2) +

1

2
log

(

snr
1/2δ

64h

)

− 1

≥
1

4
log(h2

snr) +
1

2
log(δ)− 4

=
1

4
log(h2

snr)−
γ

2
− 4

for all but a set of channel gains in [1, 2) with measure 2−γ

where in the last step we have set δ = 2−γ . Since the ψ-
approximability of h is equivalent to ψ-approximability of
h+ b for any b ∈ Z, the result holds for any h ∈ [b, b+ 1).

One can similarly derive bounds for other distributions,
such as Gaussian fading. More generally, the results in [23]
can be used to derive outage-type approximations for higher
dimensions as well as effective channel gains that lie on
manifolds.

V. CONCLUSIONS

As we have seen, Diophantine approximation provides
useful techniques and bounds for characterizing the perfor-
mance of lattice-based coding strategies. In this brief survey,
we have focused on the applications of the Khintchine-
Groshev Theorem and its generalizations for bounding the
performance of compute-and-forward. Two very recent pa-
pers have proposed alternative novel techniques for upper
bounding the outage probability for the Kth computation
rate in the more general MIMO setting. In particular, [32]
upper bounded the outage probability under random unitary
precoding for the compound MIMO channel with a given
white-input mutual information, whereas in [33] the outage
probability was bounded under various statistical assumptions
on the distributions of the channel matrix.
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