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Abstract—The construction of multiclass classifiers from
binary classifiers is studied in this paper, and performance
is quantified by the regret, defined with respect to the Bayes
optimal log-loss. We start by proving that the regret of the
well known One vs. All (OVA) method is upper bounded by
the sum of the regrets of its constituent binary classifiers.
We then present a new method called Conditional OVA
(COVA), and prove that its regret is given by the weighted
sum of the regrets corresponding to the constituent binary
classifiers. Lastly, we present a method termed Leveraged
COVA (LCOVA), designated to reduce the regret of a
multiclass classifier by breaking it down to independently
optimized binary classifiers.

I. INTRODUCTION

We consider the standard classification problem where
(X,Y ) ∼ PXY are dependent random variables, drawn
from a possibly unknown distribution PXY , Y ∈ Y =
{0, ...,K − 1} is the class label and X ∈ X is the ob-
servation. The goal is to come up with a classifier f(X)
that is close to Y with respect to some loss function.
The most common loss function is the 0−1 loss, and the
corresponding classifier is designed such as to minimize
the classification error probability Pr(f(X) 6= Y ). In
many cases, however, the observation X reveals some
information on the label Y , but not enough to accurately
predict the label. In such cases, a preferable approach is
to design classifiers that output soft information, namely
a conditional probability distribution for Y given X ,
rather than committing to a single value of Y . The
common choice for a loss function measuring the quality
of such a “soft classifier” is the logarithmic loss (log-
loss)[1]–[6], which is the focus of this paper.

Since binary distributions are determined by a single
parameter, a soft binary classifier amounts to a mapping
from X to the interval [0, 1]. Constructing a multiclass
soft classifier, on the other hand, requires to choose a
mapping from X to the K − 1-dimensional simplex,
which becomes a more complex task as K increases.
It is therefore desirable to develop techniques for fusing
multiple off-the-shelf binary classifiers (such as logistic
regression, decision trees, support vector machines etc.)
into a multiclass one. A good fusion method should have
the property that if each of the binary classifiers are
close to being optimal, then so is the resulting multiclass

classifier. To that end, we define the regret of a classifier
as the difference between the expected loss it attains and
the loss attained by the optimal Bayes classifier. We then
analyze the regret of fused multiclass classifiers in terms
of the regrets of the underlying binary classifiers.

For the 0− 1 loss, many works have developed meth-
ods for constructing multiclass classifiers from binary
ones [7]–[16] and have studied the dependence of the
overall error probability on the error probabilities of
the binary classifiers. Nevertheless, to the best of our
knowledge, this is the first work to address this topic
under log-loss.

Perhaps the simplest fusion method that comes to
mind is the One vs. All method, where a binary soft
classifier {pi}K−1

i=0 is constructed for each of the events
{Y = i}K−1

i=0 , and those are merged to a distribution
on Y simply by normalizing each pi by

∑
j pj . Our

first main result is that the regret attained by this
fusion method is upper bounded by the sum of the
regrets of the binary classifiers. Next, we propose a
novel merging method, dubbed Conditional One vs.
All (COVA), inspired by the non-binary information-
distilling qunatizer proposed in [17] and the non-binary
channel upgrading algorithm in [18]. The COVA method
is based on constructing binary soft classifiers for the
events {Y = i} conditioned on the event {Y ≥ i},
for i = 0, . . . ,K − 2. Those classifiers are then natu-
rally merged into a multiclass classifier, whose regret is
proved to be exactly a weighted sum of the regrets of
the underlying binary classifiers, where the weights are
explicitly determined by PY .

In fact, any multiclass classifier induces K − 1 prob-
ability assignments on the K − 1 conditional events
used by the COVA method. The regret of any such
classifier is therefore the weighted sum of the regrets
of those induced binary classifiers. Thus, if we can
tweak a multiclass classifier in a way that decreases
the log-loss of those induced binary classifiers, we are
guaranteed to decrease the total multiclass log-loss.
Based on this observation, we develop a method which
we call Leveraged COVA (LCOVA) for improving the
performance of parametric multiclass predictors. In
particular, LCOVA gives rise to an improvement for the
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widely used Softmax multiclass classifier. Since Softmax
forms the last layer in many deep neural net (DNN)
architectures, the proposed LCOVA method may lead to
an improverment in their respective performance.

II. CLASSIFYING WITHOUT CONDITIONING

For the sake of simplicity of exposition, we start
by presenting our results without conditioning on the
observed data X . The generalization to the conditional
case is given in the following section. Let Y ∼ P be the
class random variable supported on Y = {0, . . . ,K−1},
and K > 2. We use P (i) and pi interchangeably to
denote the class probability Pr(Y = i). Let Q denote a
(possibly mismatched) probability assignment on Y . We
define the log-loss for predicting Y based on Q, while
the actual underlying distribution is P by

L(P,Q) , Ey∼P log
1

Q(y)
.

This quantity is also known as the cross-entropy of Q
relative to P . It is well-known that minQ L(P,Q) is
attained by Q = P , and that for this choice L(P, P ) =
H(Y ), where H(·) denotes entropy. We denote the
regret related to using Q instead of P by:

R(P,Q) , L(P,Q)− L(P, P ) = D(P || Q),

where D(P || Q) is the Kullback-Leibler divergence
between P and Q. We shall use R(P,Q) and D(P || Q)
interchangeably, where the first notation shall be used to
state results, and the latter shall be used for the analysis.

In the sequel we use Bernoulli random variables and
denote their respective properties (success probability,
log-loss, regret etc.) using lowercase letters. Namely, let
U ∼ Ber(p), (i.e. U ∈ {0, 1}, and Pr(U = 1) = p), and
let q be the parameter of a possibly mismatched distri-
bution Ber(q). The related (binary) log-loss is defined
as `(p, q) , p log 1

q + (1 − p) log 1
1−q , and the related

(binary) regret is defined as r(p, q) , `(p, q)− `(p, p) =
d(p || q), where d(p || q) denotes the binary divergence
and `(p, p) = h(p) denotes the binary entropy of p. Let
us define the following set of Bernoulli random variables

Ai = Ai(Y ) , 1(Y=i), i = 0, . . . ,K − 1.

where 1(·) is an indicator function, being equal to one
if the condition is satisfied and zero otherwise. Trivially,

pAi
, Pr(Ai = 1) = P (i).

This identity implies that the set of success probabilities
{pAi
}K−1
i=1 can provide the exact distribution of Y .

We now present two methods for building estimators
for P using Bernoulli random variables. The first is
called One vs. All (OVA), and is straightforward and
widely used. The second, Conditional OVA (COVA), is
a novel contribution, and is slightly more complicated
conceptually.

Definition 1 (One vs. All (OVA)). Given a set of
K estimates {qAi}K−1

i=0 , not all zero, of the respective
probabilities {Pr(Ai = 1)}K−1

i=0 , the OVA estimate of P
is defined as

QOVA(i) =
qAi∑K−1
j=0 qAj

, i = 0, . . . ,K − 1. (1)

To motivate our suggested COVA method, we first
express Pr(Y = i) in the following unconventional way

Pr(Y = i) = Pr(Y = i, Y ≥ i)
= Pr(Ai = 1 | Y ≥ i) Pr(Y ≥ i). (2)

Noting that

Pr(Y ≥ i) =

i−1∏
j=0

Pr(Y 6= j | Y 6= 0, ..., Y 6= j − 1)

=

i−1∏
j=0

Pr(Aj = 0 | Y ≥ j),

we get

P (i) = Pr(Ai = 1 | Y ≥ i)
i−1∏
j=0

Pr(Aj = 0 | Y ≥ j). (3)

Denoting

pcond
Ai

, Pr(Ai = 1 | Y ≥ i) (4)

and noticing that Pr(AK−1 = 1 | Y ≥ K − 1) = 1, we
can rewrite (3) as

P (i) =

p
cond
Ai

∏i−1
j=0

(
1− pcond

Aj

)
i < K − 1∏K−2

j=0

(
1− pcond

Aj

)
i = K − 1

(5)

Thus, given a set of possibly inaccurate estimates
{qcond
i }K−1

i=0 for {pcond
i }K−1

i=0 , we can plug them in (5)
and obtain an estimate for P . This method summarized
in the next definition.

Definition 2 (Conditional OVA (COVA)). Given a set
of K − 1 estimates {qcond

i }K−2
i=0 for the respective con-

ditional success probability {Pr(Ai = 1 | Y ≥ i)}K−2
i=0 ,

the COVA estimate to P is defined as

QCOVA(i) =

q
cond
Ai

∏i−1
j=0

(
1− qcond

Aj

)
i < K − 1∏K−2

j=0

(
1− qcond

Aj

)
i = K − 1

(6)

We note that Def. 2 can be regarded as a special case
of hierarchical binary classification in the spirit of [12],
[19]. This paper focuses on this special case for the sake
of clarity of exposition. Generalizations of the definition
(including permutation of the labels) and the respective
regret appear in extended version [20].
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A. The Regrets of OVA and COVA
We now bound the regrets R(P,QOVA) of the OVA

procedure and R(P,QCOVA) of the COVA method, in
terms of the regrets of the involved binary classifiers,
namely, the sets {r(pi, qAi)}, and {r(pcond

Ai
, qcond
Ai

)},
respectively.

Lemma 1 (OVA regret).

R(P,QOVA) ≤
K−1∑
i=0

r(pi, qAi
) (7)

Proof. We start by rewriting (1) as QOVA(i) =
qAi

αK , for

i = 0, . . . ,K− 1, where α ,
∑K−1

i=0 qAi

K . Note that since
qAi ∈ [0, 1] for all i it is guaranteed that α ∈ (0, 1]
(note that by Def. (1), {qAi} are not all zero, so α > 0).
Recalling that the regrets can be written as divergences,
the statement in (7) is equivalent to

∑K−1
i=0 d(pi || qAi

)−
D(P || QOVA) ≥ 0. Expanding D(P || QOVA) yields

D(P || QOVA) =

K−1∑
i=0

pi log
pi

qAi
/(αK)

(8)

=

K−1∑
i=0

pi log
pi
qAi

+ log(αK),

and expanding
∑K−1
i=0 d(pi || qAi) yields

K−1∑
i=0

d(pi || qAi
)

=

K−1∑
i=0

(
pi log

pi
qAi

+ (1− pi) log
1− pi

1− qAi

)
. (9)

Subtracting (8) from (9) we obtain
K−1∑
i=0

d(pi || qAi
)−D(P || QOVA)

=

K−1∑
i=0

(1− pi) log
1− pi

1− qAi

− log(αK) = F1 + F2,

where the last transition is by adding and subtracting the
term (K − 1) log K−1

K(1−α) and defining

F1 ,
K−1∑
i=0

(1− pi) log
1− pi

1− qAi

− (K − 1) log
K − 1

K(1− α)
,

F2 , (K − 1) log
K − 1

K(1− α)
− log(αK).

Note that since for all i, pi ≤ 1 and qAi
≤ 1, it is

guaranteed that 1− pi and 1− qAi
are non-negative (for

pi = 1 we use the convention that 0 log 0 = 0). Since

∑K−1
i=0 pi = 1 and

∑K−1
i=0 qAi

= αK, F1 ≥ 0 holds due
to the log-sum inequality [21]. Furthermore,

F2 = (K − 1) log
K − 1

K(1− α)
− log(αK)

= K

((
1− 1

K

)
log

1− 1
K

(1− α)
+ 1

K log
1
K

α

)
= K · d

(
1
K || α

)
≥ 0,

which concludes the proof.

Lemma 2 (COVA regret).

R(P,QCOVA) =

K−2∑
i=0

Pr(Y ≥ i)r(pcond
Ai

, qcond
Ai

).

Proof. Let us start by expanding the related losses.
Starting with L(P,QCOVA) using (6) we obtain

L(P,QCOVA) =

K−1∑
i=0

P (i) log
1

QCOVA(i)

=

K−2∑
i=0

P (i) log
1

qcond
Ai

∏i−1
j=0(1− qcond

Aj
)

+ P (K − 1) log
1∏K−1

j=0 (1− qcond
Aj

)

=

K−2∑
i=0

(
P (i) log

1

qcond
Ai

+ Pr(Y > i) log
1

1− qcond
Ai

)
,

where the last transition is by rearranging the sums.
Substituting the definition of pcond

Ai
from (4) into (2) we

have that P (i) = pcond
Ai

Pr(Y ≥ i) and similarly,

Pr(Y > i) = Pr(Y > i, Y ≥ i)
= Pr(Y > i | Y ≥ i) Pr(Y ≥ i)
= (1− pcond

Ai
) Pr(Y ≥ i)

which renders

L(P,QCOVA) =

K−2∑
i=0

Pr(Y ≥ i)`(pcond
Ai

, qcond
Ai

).(10)

To calculate L(P, P ) we repeat the same process, re-
placing QCOVA by P , as expressed in (5) and obtain

L(P, P ) =

K−2∑
i=0

Pr(Y ≥ i)`(pcond
Ai

, pcond
Ai

). (11)

Subtracting (11) from (10) concludes the proof.
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III. ADDING CONDITIONING ON THE OBSERVATIONS

Let us now consider a setup where one is interested
in predicting Y based on some observation X , where
(X,Y ) ∼ PXY = PX ×PY |X . The observation random
variable X is supported on X , where X is either some
discrete alphabet or X = Rd. We denote the posterior
probability of the label y given the observation x by

PY |X=x(y) , Pr(Y = y | X = x).

The prediction here is “soft”, that is, given the obser-
vation X = x the goal is to provide a probability as-
signment QY |X=x which is close to PY |X=x under log-
loss. We would now like to construct QY |X=x for every
value x ∈ X , using a set of conditional Bernoulli success
probabilities. Using the OVA methods, we denote

pAi|X=x , Pr(Ai = 1 | X = x)

and denote its respective estimate by qAi|X=x. The OVA
estimate now follows by adding the conditioning to (1)
yielding for 0 ≤ i ≤ K − 1

QOVA
Y |X=x(i) =

qAi|X=x∑K−1
j=0 qAj |X=x

. (12)

Extending the COVA method to the conditional case is
done similarly as follows. For every x ∈ X denote

pcond
Ai|X=x , Pr(Ai = 1 | Y ≥ i,X = x)

and its respective estimate by qcond
Ai|X=x. (6) is now

extended to

QCOVA
Y |X=x(i)

=

q
cond
Ai|X=x

∏i−1
j=0

(
1− qcond

Aj |X=x

)
i < K − 1∏K−2

j=0

(
1− qcond

Aj |X=x

)
i = K − 1

(13)

We use L(PY |X , QY |X | PX) to denote the expected
conditional log-loss and define it as

L(PY |X , QY |X | PX) , Ex∼PX
L(PY |X=x, QY |X=x).

The conditional regret is denoted and defined similarly:

R(PY |X , QY |X | PX) , Ex∼PX
R(PY |X=x, QY |X=x),

which is also the standard definition of the conditional
divergence D(PY |X || QY |X | PX). The Bernoulli
counterparts are appropriately defined and denoted as
follows:

`(p|X , q|X | PX) , Ex∼PX
`(p|X=x, q|X=x)

r(p|X , q|X | PX) , Ex∼PX
r(p|X=x, q|X=x)

Using these definitions, the following corollarries are
obtained by taking the expectation over Lemma 1 and
Lemma 2 respectively.

Corollary 1 (OVA conditional regret).

R(PY |X , Q
OVA
Y |X | PX) ≤

K−1∑
i=0

r(pi|X , qAi|X | PX).

Corollary 2 (COVA conditional regret).

R(PY |X , Q
COVA
Y |X | PX)

=

K−2∑
i=0

Pr(Y ≥ i)r(pcond
Ai|X , q

cond
Ai|X | PX|Y≥i)

A. Training the Binary Classifiers

In supervised learning under log-loss, one is given a
training set of labeled samples T , {(xi, yi)}Nn=1 drawn
independently from an unknown distribution PXY , and
is required to output a conditional distribution QY |X
for which the regret R(PY |X , QY |X) is small. We are
interested in a “black-box” reduction from the multiclass
supervised learning problem to the binary case. To this
end, assume we have access to an “off-the-shelf” binary
classifier, (e.g., logistic regression, decision tree) which
gets a training set with binary labels {(xn, an)}Nn=1,
x ∈ X , an ∈ {0, 1}, as input, and constructs a prob-
ability assignment with small regret qA|X=x for every
x ∈ X as output. We now describe how to train a low-
regret multiclass classifier via this “black-box”, using the
OVA and the COVA methods.

In the OVA case, we build QOVA
Y |X=x using the

set {qAi|X=x}K−1
i=0 according to (12). Every qAi|X=x

is trained on the set {(xn, an)}Nn=1 where an =
1(yn=i). In the COVA case, we build QCOVA

Y |X=x using
the set {qcond

Ai|X=x}
K−2
i=0 according to (13). For each

i = 0, . . . ,K − 2, the classifier qcond
Ai|X=x is trained on

the set {(xn, an)}n:yn≥i (namely, only on the pairs for
which yn ≥ i) and an = 1(yn=i).

IV. LEVERAGING COVA IN THE MULTICLASS CASE

Let us now present a method that incorporates COVA
to reduce the regret of a multiclass classifier. The ma-
jority of classifiers in use are parametric. That is, the
conditional distribution QY |X they output after training
is dictated by a vector of parameters, θ ∈ Θ. We
denote the conditional distribution corresponding to such
a classifier by QY |X;θ. This distribution induces the
conditional binary classifiers

qcond
Ai|X=x;θ =

QY |X=x;θ(i)∑K−1
j=i QY |X=x;θ(j)

, (14)

which are obviously also fully determined by the pa-
rameter vector θ ∈ Θ. Thus, each of the induced binary
classifiers also belong to a parametric family. Noting that
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Scenario N Softmax OVA COVA LCOVA
Train Test Train Test Train Test Train Test

A 105 −0.005 0.005 0.001 0.009 0.010 0.019 −0.008 0.032
A 106 −0.000 +0.000 0.004 0.005 0.013 0.014 0.016 0.021
B 105 0.703 0.728 0.708 0.732 0.716 0.740 0.663 0.717
B 106 0.717 0.718 0.721 0.723 0.730 0.731 0.682 0.690

TABLE I
EXPERIMENTAL RESULTS. THE ENTRIES REPRESENTS REGRET VALUES NATURAL LOGARITHM

QY |X;θ can be written as in (13), replacing qcond
Ai|X=x with

qcond
Ai|X=x;θ, Corollary 2 implies that

R(PY |X , QY |X;θ| PX) =
K−2∑
i=0

Pr(Y ≥ i)r(pcond
Ai|X , q

cond
Ai|X;θ| PX|Y≥i).

Noting that all binary classifiers in (14) are determined
by the same parameter vector θ ∈ Θ, an approach for
improving the classifier immediately becomes apparent:
allow to use a different parameter vector θi ∈ Θ
for each qcond

Ai|X=x;θi
. If for each i we choose θi =

argminθ∈Θ r(p
cond
Ai|X , q

cond
Ai|X;θ | PX|Y≥i), we are guaran-

teed to get a smaller (or identical) regret for the obtained
multiclass classifier. We therefore propose to separately
train each of the binary classifiers qcond

Ai|X=x;θi
such as to

minimize the empirical loss over the parameter space
Θ, and then merge them into a multiclass classifier
using the COVA equation (13). We term this method
the leveraged COVA (LCOVA). Given enough training
samples, the LCOVA method is guaranteed to attain a
smaller (or identical) regret than the baseline multiclass
classifier QY |X;θ. The generalization error, on the other
hand, might be greater, as we can now use K different
parameter vectors, rather than one.

Let us now demonstrate the LCOVA method for the
important special case where the baseline multiclass clas-
sifier is logistic regression (Softmax), which corresponds
to: QY |X=x;θ(i) = exp(βTi x)/

[∑K−1
j=0 exp(βTj x)

]
. The

induced ith conditional binary classifier is: qcond
Ai|X=x;θi

=

exp((βii)
Tx)/

[∑K−1
j=i exp((βij)

Tx)
]

whose parameter

set is θi = {βij}
K−1
j=i (we do not constrain any βij vector

to zero). The sets {βij}
K−1
j=i for all i ∈ {0,K − 1} can

be learned by independently minimizing the following
empirical log-loss functions:

L̂i(T, {βij}K−1
j=i ) = −

∑
n:yn=i

(βii)
Txn− (15)

∑
n:yn>i

log

 K−1∑
j=i+1

e(βi
j)T xn

+
∑

n:yn≥i

log

K−1∑
j=i

e(βi
j)T xn

 .
This minimization can be carried by standard optimiza-
tion tools such as stochastic gradient descent (SGD).

V. EXPERIMENTAL RESULTS

Table I presents experimental results for classifiers
designed using the OVA, COVA and LCOVA methods,
as well as a standard Softmax classifier, applied on syn-
thetic data with K = 10 classes of dimension d = 100.
In the experiments, Y ∼ Uniform({0, . . . ,K − 1}),
and the conditional distribution of X for the kth class
is Gaussian: [X|Y = i] ∼ N (µi,Σi). We experiment
on two scenarios. In both, the class centers {µi} are
distinct. In Scenario A, Σi = σ2I and in Scenario B
{Σi} are class dependent and non-diagonal. All binary
logistic regression and Softmax classifiers were trained
using a standard Python implementation [22]. LCOVA
classifiers were trained by minimizing the loss in (15)
using SGD. Since the data was synthetically generated,
we have access to the ground-truth distribution. The
regrets in the table were calculated with respect to the
optimal Bayes log-losses, which were approximated by
a Monte-Carlo simulation using the true distributions .

It is well known, that given enough samples, Softmax
can approach the Bayes log-loss in the additive Gaussian
case, which is expressed by its near zero regrets in
Scenario A. The rest of the classifiers have small regrets,
but as expected, do not outperform Softmax. In Scenario
B, the regret of Softmax is strictly positive for any
number of samples, and we can see that it is outper-
formed by LCOVA. The susceptibility to the training
data size is also observed in this data, and overfitting
is manifested by the differences between the training
regrets test counterparts. All classifier show some degree
of overfitting at N = 105, which diminishes at N = 106.
It is in-place to note that despite the fact that LCOVA
has ≈ K/2 more parameters than any of the other three
classifiers OVA, COVA and Softmax, its generalization
error is still quite reasonable, and it outperforms them
in both train and test regrets. In DNNs, one usually
has a number of training samples far exceeding the
number of classes. Consequently, increasing the number
of parameters in the model by a factor of ≈ K/2 should
not have a noticeable effect on the generalization error.
Studying the effect of replacing the Softmax classifier
in the last layer of DNNs with LCOVA, is therefore a
promising direction for future research.
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